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We study the one-dimensional nonstationary temperature field in a solid when the thermal 
conductivity and heat capacity depend linearly on the temperature. 

In making thermal calculations for conditions of intense thermal activity it becomes necessary to con- 
sider nonlinear problems of nonstationary heat conduction because of the need to account for the dependence 
of heat transfer coefficients on the temperature. The solution of such problems, even in the simplest cases, 
for example, for stationary boundary conditions of the first kind, is very difficult. However, it is often 
necessary in practice to have an analytical description of the temperature distribution for the case of a 
time-varying heat transfer coefficient and also a description of the temperature of the surrounding medium. 
This circumstance complicates the problem ~ substmatially since, in addition to the nonlinearity of the bound- 
ary conditions arising from the dependence of the coefficient of thermal conductivity on the temperature of 
the surface of the body, the nonstationarity of these boundary conditions must also be taken into account. 

A p r o b l e m  of th i s  t y p e  m a y  be f o r m u l a t e d  as  f o l l o w s :  

0-~-0 [~(t) Ot(x' ~) ] = p C ( t )  Ot(x' & , (1) 

Ot (x, ~) x=o = O, 
Ox (2) 

(t) at (x, ~) ~=~ 
Ox = ~ (~) [t~ (~) - -  t (a, "Ol, (3) 

t (x, o)=o. 

A strictly analytical solution of the problem defined by Eqs. (1)-(3) is not possible. Only approximate 
�9 methods of various kinds are available for problems of this type (see [1-5] and other references). 

A solution to problem (i) was given in [I] for the case of stationary boundary conditions of the first and 
third kinds and with the assumption of linear dependence on the temperature of the heat capacity and the 
thermal conductivity. The integral relations due to L. S. Leibenzon were used in obtaining the solution. 
In [2] a solution was obtained for the case of nonstationary boundary conditions of the first kind. By divid- 
ing the time duration of the process and the plate thickness into a number of computational intervals the 
author reduced the problem to a linear one for a multilayered system. In [3] a numerical method was given. 

The most complete treatment of the problem (1)-(3) was given in [4]. The solution was obtained as a 
series in powers of a small parameter ~, assuming the heat capacity and thermal conductivity to depend 
linearly on the temperature. However, in handling the conditions (2) the author placed a restriction on the 
manner of variation of the heat transfer coefficient ~ (T) and on the temperature tc(~ ) of the medium, which 
he took to be constant in time. 

In this paper we consider an approximate method for solving problem (1)-(3) when the heat transfer 
coefficient and the temperature of the surrounding medium vary arbitrarily with the time. We obtain our 
solution with the aid of the special bilinear series given in [5], guaranteeing thereby rapid convergence. 
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With an increase in temperature the heat capacity C of metals increases while the thermal conductiv- 
ity coefficient X may increase or decrease. In the last case, the effect of variability of the thermal proper- 
ties is partially or even completely compensated for [6], in thefirst case, however, it may turn out to be 
significant. In accordance with this, then, we consider the first case. 

Based on the data given in [7], we may assume that the quantities X(t) and C(t) vary linearly with the 
temperature: 

(t) = Z o -  xl t (x, ~) 
t~ (T) 

c (t) = Co + Cl t (x, , )  
tc ( , )  

We int roduce  the d imens ion le s s  p a r a m e t e r s  [6] 

(4) 

�9 t (x, ~) c* (~) 5 ; Fo = X3 - -  Xl T O -- 1. (5) 
x_5; Bi (z) --  ;~o - -  ~'~ Co + C, p5 2' tc (~) 

Subst i tut ing the  r e l a t ions  (4) and (5) into the  se t  of Eqs .  (1)-(3), we obtain,  a f te r  s o m e  s impl i f ica t ions ,  

OVI(O) - 0[2(0) + ~ r  11, 
0~ 2 OFo 

000~ ~=o= 0, 

OOo~ ~=1 = Bi (Fo) [~ (0)I~=,, 

where 

(__. ) ( 1  c, 
f l(O)==O 1 1 X~ O ; f 2 ( O ) = O  1 +  2 C o + C 1  

2 ~o - -  ~1 

{ C1 (1 + O)]; /~(O) = O 
[ 3 ( 0 ) = 0  I-~ Co+C~ 1 X' O 

Xo -" ~'1 
-to = a dtc (~) 

t c (~c) d~ 

~ 

The graphs in Fig. I show the variation of fl(| f2(| f3(@) and f4(| with @for the whole range of 
values <-I, 0 >. These graphs were drawn assuming that k I = 0.SX 0, C I = C 0. Such values correspond to a 
decrease of k(t) by 50% and an increase of C(t) by 100% in comparison with their initial values, for the at- 
tainment of the temperature equal to the temperature of the surrounding medium, and this characterizes 

a wide range of variation of the thermal properties of materials. 

As is evident from the graphs, the curves f(| may be approximated fairly precisely by straight lines: 

fj (o) = K~o. 

The values of Kj may be determined from the relations 

0 

f [fj(O)--K~O1dO = O. 

Upon making  such an approximat ion  we obtain the  l inea r  p r o b l e m  

K1 020 =K~ OO + ( K s O + l ) ,  (6) 
O~ 2 OFo 

000~ ~=o = O, 

aO0~ ~=1 = - -  Bi (Fo) K~O ]~=i, 
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Fig. I. Variation of fl, f2, In, and f4 
with @. 

o [Fo=0 = - -  1, (7) 

where 

l )h 1 C 1 K I = I  -~ ; K 2 = I  
3 )~o--)h 3 C o + C  1 

1 C~ 
Ka'- 1 + - - ;  

6 C O + C 1 

K ~ = 2  )~o--)h (1 )~o--)h in ~o ) .  
)~1 �9 ~1 /'~0 - -  ~1 

(8) 

The solution of the problem (6)-(7) was given in [8] ; we 
give here only the finn result: 

O = - -  2 7~ (g, Fo) % (Fo). 
i = 1  

(9) 

In de te rmining  7i(~, Fo) it is n e c e s s a r y  to take into account that in this case  the Green ' s  function is 
given by 

( 1 
! K4Bi (eo) 

6 (L ~, F o ) =  
I 1 
t) K~Bi(Fo) 

The functions ~oi(Fo ) in Eq. (9) a re  de te rmined  by solving the sys tem of equations 

Ah, , (Fo)~i (Fo) + [Bh, i (Fo) + t-cAh.~ (Fo)] % (Fo) + %(Fo)=  ~Dh (Fo) 
k, i = l  

with the initial conditions 
1 

j" p;  (n)a,1 
0 % (0)= , 

[ v~ (n, o) P; (n) dn 
6 

(10) 

( l l )  

In Eqs. (I0) 

i 

K, S A k ' i ( F ~  7k(B, Fo)gt(rh Fo)d~], 
0 

1 

Bk, i (Fo) = -~-1. 7h (~1, Fo) 7i (q, Fo) dq, 
0 

I 
D h (Fo) = i' 7k (rl, Fo) dr I. 

6' 

By using in the solution a special uniformly convergent series, we can, in practice, limit ourselves 
in Eq. (9) to two or even only one term of the sum. 

In the second ease, after some simplifications, the solution of the problem has the form 

@ = __ 

1 1 
Fo , Fo 

K , B i ( F o ) - + 2  - ( I - ' ' )  {@21<exp I f (  K, 
1 l . K~AI,1 

- -~ - -  0 0 

K~Bi (Fo) 3 
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Fo 

( 
K~.AI,1 

0 

(12) 

w h e r e  

1 , = 3K4Bi (Fo) ; Bi (Fo) -- a (Fo) 
A~,I 3 + K4Bi (Fx~) ;~o - -  s 

In a c c o r d  with Eqs .  (5) and (12) we f ina l ly  obtain 

t (x, ~) = to (~) ( o  4- 1). 

(13) 

(14) 

Still ano ther  me thod  can  be  used to  l i n e a r i z e  the  p r o b l e m  (1)-(3). 

The fol lowing method  of l i nea r i za t i on  was  given in [9] f o r  the  condit ion C = coas t .  

If  in the s y s t e m  (1), (2) we put 

Ot Ot 
pC = coast, )~ ( t ) -~-  = m, 0)~ -- n (15) 

and in t roduce  the  new v a r i a b l e  

tr (~) 
z = ;L ;~o, (16) 

we obtain a l i n e a r  p r o b l e m  with homogeneous  bounda ry  condi t ions  

- -  n - -  [ c  , 
Ox ~ m 

c)z x=0 = 0, 
Ox 

Oz ~=8 - c~ (~) ~n z (,5, T), 
Ox m 

w h e r e  

(17) 

(18) 

. io -_ dtc (T) 
dr 

We note  tha t  the f i r s t  condi t ion in Eqs .  (16) c o r r e s p o n d s  to  an exponential  f o r m  f o r  the  c u r v e  Mt): 

t I - -  t o 

In &o/)~1 

and the second  to  a l i n e a r  approx ima t ion  f o r  Mt): 

n - -  - -  
t 1 - -  t O 

(19) 

(20) 

The  solut ion of the  p r o b l e m  (17), (18) is well  known [81: 

n 

z (x, ~) = - -  ~ 7~ (x, ~) ~ (~). 
i = 1  

If in Eq. (21) we l imi t  o u r s e l v e s  to  only the  f i r s t  t e r m  in the  sum,  we obtain f ina l ly  

(21) 

t (x ,  ~) = tc (~)  - -  
1 + 1 g i ( ~ )  

(d ( 
.J A1,1] exp,  . t ' -~ .~-)  
0 0 

(22) 
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The value of Ai, I and the Biot number may be determined from the expressions 

A1,1 = Cpnm 62 I B~) § l 1' 

Bi (~) = ~ (~) 6n , 
m 

where m and n are given in Eqs. (19) and (20). 

t (x ,  ~-) 
T 
X 

5 

P 

C 
a(~'), te(~') 

N O T A T I O N  

is the cu r ren t  t empera tu re ;  
is the t ime;  
is the coordinate;  
is the thickness;  
is the density; 
is the thermal  conductivity;  
is the heat capacity;  
a re  the heat t r an s f e r  coefficient  and t em p e ra tu r e  of the ambient medit~m. 

lo 
2. 
3.  
4. 
5. 
6.  

7. 

80 
9. 
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